

Miscellaneous Exercise Question Bank

1.	An aci	dic indicator HIr	n (K _{HIn}	$=10^{-6}$) ionises	as HIn	$H^+ + I$	n ⁻ . The	acid colour pr	edominates			
	over th	e basic colour w	hen HIn	n is at least 10 ti	imes mo	re concentrate	d than In	1^- ion. On the	other hand			
	basic colour predominates over the acid colour when the \mbox{In}^- ion is at least 5 times more concentrated											
	than H	n HIn. Hence pH range of the indicator is:										
	(A)	5.0 - 6.7	(B)	7.0 - 8.7	(C)	5.3 - 7.0	(D)	7.0 - 8.1				
2.	The co	rrect statement a	amongst	the following is					\odot			
	(A)	A strong electro	olyte ren	nains completely	dissocia	ited at all dilut	ions.					
	(B)	Upon dilution t	he degre	ee of dissociation	of a we	ak electrolyte a	and numb	er of ions per u	unit volume			
	of its s	olution both incr										
	(C)	_	•	completely ionise			ot comple	tely dissociated	1.			
	(D)	pH of solution of	of a wea	k acid decreases	with dil	ution.						
3.	4M sol	ution of a weak	monob	asic acid (x % i	onized a	and $pH = 3.0$)	is diluted	l to 1 M by ac	lding water			
	(distille	ed). Percentage ic	onisation	and pH of solu	tion afte	r dilution will b	e respect	ively.	\odot			
	(A)	2x and 2.7			(B)	0.25x and 3.3	3					
	(C)	0.5x and 2.7			(D)	2x and 3.3						
4.	pH of	a buffer solution	change	es from 6.20 to	6.17 wh	en 0.003 mole	of acid i	s added to 500	mL of the			
	buffer.	The buffer capac	city of th	ne system is, the	refore :				lacksquare			
	(A)	0.1	(B)	0.3	(C)	0.2	(D)	0.4				
5.	K _{sp} of	CaSO ₄ is 2.4×1	0^{-5} at 2	25°C. In a solutio	on conta	ining Ca ²⁺ ior	ns the pre	cipitation of Ca	SO ₄ begins			
	to occi	ar when SO_4^{2-} ic	on conce	entration in the	solution	is made just	to exceed	the value of 4	$1.8 \times 10^{-3} \text{ M}.$			
		concentration of							()			
	(A)	200 ppm	(B)	40 ppm	(C)	400 ppm	(D)	100 ppm				
_					, ,		(_,	PP	()			
6.		t statement regar	0.	9		Ü			(\mathbf{b})			
	(A)	•	_	species i.e. H ₂ O 1								
	(B)		-	es: H ₂ O (molecule		and OH						
	(C)	It contains only	two spe	ecies H ₃ O ⁺ and	OH ⁻							
	(D)	It contains thre	ee specie	es H ₂ O (molecule	s), H ₃ O ⁺	and OH						
7.	There i	is a solution whi	ich is on	ne molar w.r.t. e	ach M ²⁺	and X ³⁺ ion	is present	in it. The K _{sp}	of M(OH) ₂			
	and X(OH) ₃ are 4.0×10	0^{-10} and	d 2.7×10^{-14} re	espective	ely. If NH ₄ OH	solution	is added gradı	ually to the			
	above s	solution which of	f the foll	owing will happe	en?				\odot			
	(A)	Both M(OH) ₂ ar	nd X(OH) ₃ will precipitate	e togethe	er						
	(B)	M(OH) ₂ will pre	cipitate	first								
	(C)	X(OH)3 will pred	cinitate t	c ,								
		X(OH) ₃ will precipitate first										

8.	20 mL of a weak acid HX is titrated against 0.1 M NaOH. At the point of half equivalence the pH of										
	solutio	on is 5.7. Hence	Ka of a	eid is:					\odot		
	(A)	7.0×10^{-5}	(B)	2.0×10^{-5}	(C)	7.0×10^{-4}	(D)	2.0×10^{-6}			
9.	If an a	iqueous solution	n at 25°C	has twice as m	any OH	as pure water	its pOH	will be :	\odot		
	(A)	6.699	(B)	7.307	(C)	7	(D)	6.98			
10.	Solub	ility of AgCl i	n water	, 0.01M CaCl ₂	, 0.01M N	NaCl and 0.05	SM AgNO	$_3$ are S_1 , S_2 ,	S ₃ and S ₄		
	respec	ctively then :							\odot		
	(A)	$S_1 > S_2 > S_3$	$>$ S_4		(B)	$S_1 > S_3 > S_2$	> S ₄				
	(C)	$S_1 > S_2 = S_3$	> S ₄		(D)	$S_1 > S_3 > S_4$	$< S_2$				
11.	pH of	$Ba(OH)_2$ solut	ion is 12	. Its solubility p	roduct is	:			\odot		
	(A)	10^{-6}M^3	(B)	$4\!\times\!10^{-6}M^3$	(C)	$0.5 \times 10^{-7} \mathrm{M}^3$	(D)	$5\!\times\!10^{-7}M^3$			
12.	The l	nydrolysis const	ant for 2	ZnCl ₂ will be :					\odot		
	(A)	$K_h = \frac{K_w}{K_b}$	(B)	$K_h = \frac{K_w^2}{K_b}$	(C)	$K_h = \frac{K_w^2}{K_b^2}$	(D)	$K_h = \frac{K_b}{K_w^2}$			
	Where	K _b is effective	dissocia	tion constant o	f base Zn	2+			\odot		
13.	If the	degree of ioniza	tion of w	ater be 1.8 × 10	⁻⁹ at 298I	K. Its ionization	constant	will be :	\odot		
	(A)	1.8×10^{-16}	(B)	$1\!\times\!10^{-14}$	(C)	$1\!\times\!10^{-16}$	(D)	1.67×10^{-14}			
14.	When	a solution of	benzoic	acid was titrate	ed with I	NaOH the pH o	of the so	lution when ha	lf the acid		
	neutra	alized was 4.2. I			the acid i				\odot		
	(A)	6.31×10^{-5}	(B)	$3.2\!\times\!10^{-5}$	(C)	8.7×10^{-8}	(D)	6.42×10^{-4}			
15 .	10^{-2}	mole of NaOH w	as adde	d to 10 litre of w	ater. The	e pH will change	by:		\odot		
	(A)	4	(B)	3	(C)	11	(D)	7			
16.	0.1M	solution of whic	h of the	following substa	ances is n	nost acidic :			\odot		
	(A)	$\mathrm{NH_4Cl}$	(B)	KCN	(C)	AlCl ₃	(D)	CH ₃ COONa			
17.	Which	is/are lewis ac	id out of	$CH_3^+, CH_5^+, CH_3^{\Theta}$					\odot		
	(A)	$\mathrm{CH}_5^\oplus,\mathrm{CH}_3^\oplus$	(B)	CH_3^\oplus	(C)	$\mathrm{CH}_5^\oplus, \mathrm{CH}_3^\Theta$	(D)	CH_5^\oplus			
18.	The so	olubility of A ₂ X ₅	is x mol	le dm ⁻³ . Its solu	ability pro	oduct is :			\odot		
	(A)	$36 \mathrm{x}^6$			(B)	$64 \times 10^{-4} x^7$					
	(C)	$126 \mathrm{x}^7$			(D)	$1.25 \times 10^4 x^7$					
19.	The so	olubility of CH ₃ 0	CO ₂ Ag v	would be least a	mongst t	he following solv	vents in :		\odot		
	(A)	acidic solution	n of pH =	= 3	(B)	basic solution	n of pH =	8			
	(C)	neutral soluti	on of pH	1 = 7	(D)	pure water					

- **20.** If K_h (hydrolysis constant) for anilinium ion is $2.4 \times 10^{-5} M$, then K_h for aniline will be:
 - (A) 4.1×10^{10}

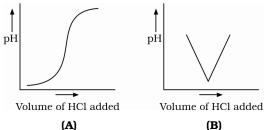
(B) 4.1×10^{-10}

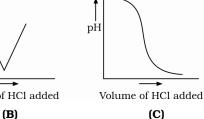
(C) 2.4×10^9

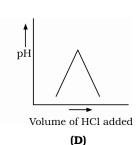
- **(D)** 2.4×10^{-19}
- **21.** Acetic acid dissolved in ammonia will be :

(

(A) Highly conducting


(B) Less conducting


(C) Can't say


- **(D)** More conducting than that in water
- 22. The equilibrium constant of the reaction $A^- + H_2O \Longrightarrow HA + OH^-$ is 10^8 times of ionic product of water at 25°C. Hence K_a of weak acid will be :
 - **(A)** 10^{-8}
- **(B)** 10^{-6}
- (C) 10^{-14}
- **(D)** None of these
- **23.** If we plot α^2 verses volume V we will get: (n = number of moles)

- (A) a straight line with slope value equal to $\frac{K_{dissociation}}{n}$
- (B) a straight line with slope equal to K_{eq}
- (C) an exponential curve
- (D) a parabola
- **24.** Equal volumes of two solutions of a strong acid having pH 3 and pH 4 are mixed together. The pH of the resulting solution will then be equal to:
 - **(A)** 3.5
- **(B)** 3.26
- (C)
- **(D)** 1.0
- **25.** Titration curve if a strong base is titrated with strong acid is :

- **26.** Let K_w at 100°C be $5.5 \times 10^{-13} M^2$. If an aqueous solution at this temperature has pH = 6.2. Its nature will be :
 - (A) acidic

(B) alkaline

(C) neutral

- (D) can't say
- 27. Dissociation constant of two acids HA & HB are respectively 4×10^{-8} & 1.8×10^{-5} . Whose pH value will be higher for a given molarity :
 - **(A)** HA
- **(B)** HB
- (C) Both same
- (D) Can't say

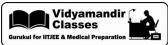
28. pH value of pure water at 0°C will be :

(A) Greater than 7

(C) Less than 7


(C) 7

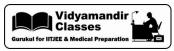
(D) All the three



29.	The pH of a buffer is 6.745. When 0.01 mole of NaOH is added to 1 litre of it, the pH changes to 6.832. Its										
		capacity is :									
	(A)	0.187			(B)	0.0115					
	(C)	0.076			(D)	0.896					
30 .	The aq	ueous solution o		\odot							
	(A)	K^+			(B)	Al^{3+}					
	(C)	SO_4^-			(D)	presence of aci	d in its o	erystal as impi	ırity		
31.	In which of the following solvents will AgBr has highest solubility?										
	(A)	10⁻³M NaBr			(B)	10 ⁻³ M NH ₄ OH					
	(C)	Pure water			(D)	10 ⁻³ M HBr					
32.	The pK_b value of ammonium hydroxide is 4.75. An aqueous solution of ammonium hydroxide is treated										
	with HCl. The pH of the solution at the point where half of ammonium hydroxide has been neutralized will be										
	(A)	9.25	(B)	8.25	(C)	7.50	(D)	4.75			
33.	The ma	aximum pH of a	solution	which is 0.1 M	in Mg ²⁺	from which Mg	(OH) ₂ is	not precipitate	d is [Given		
	that K	$_{\rm sp}$ for Mg(OH) ₂	$= 1.2 \times 1$	0^{-11}]					\odot		
	(A)	4.96	(B)	6.96	(C)	7.54	(D)	9.04			
34.	The pK	a of HCN is 9.30). The pH	I of a solution p	repared l	by mixing 2.5 m	oles KCN	and 2.5 mole	s of HCN in		
	water and making up the total volume of 500 mL is :										
	(A)	9.30	(B)	7.30	(C)	10.30	(D)	8.30			
35.	Fear or excitement, generally cause one to breath rapidly and it results in the decrease of concentration										
	of CO ₂	in blood. In wha	at way it	will change pH o	of blood '	?		\odot			
	(A)	pH will increas	se		(B)	pH will decrease					
	(C)	No change			(D)	pH will be 7					
36.	The so	lubility of A_2X_3	is S mo	ol dm ⁻³ . Its solu	bility pr	oduct is :					
	(A)	$6s^4$			(B)	$64\mathrm{s}^4$					
	(C)	$36 \mathrm{s}^5$			(D)	$108\mathrm{s}^5$					
37 .	K _b for	the hydrolysis	of reacti	on $B^+ + H_2O \rightleftharpoons$	⇒ ВОН	[+H ⁺ is 1.0×10	⁻⁶ . The l	nydrolysis con	stant of the		
	salt is			2					\odot		
	(A)	10^{-6}	(B)	10^{-7}	(C)	10^{-8}	(D)	10^{-9}	Ü		
00		. ON= +4 0500	. 47	1 II . CO E M .		NI ONI - 1 dia di					
38.	If pK _b f (A)	or CN at 25°C 12	is 4.7, t	ne pH of 0.5 M a 10	(C)	NaCN solution is 11.5	s : (D)	11			
39.	In deci solutio		, CH₃CO	OH is ionised to	the exte	ent of 1.3%. If lo	g 1.3 = 0	0.11 what is th	e pH of the		
	(A)	3.89	(B)	4.89	(C)	2.89	(D)	2.89			

MEQB 184 Ionic Equilibrium

40 .	The p	H at neutralisa	ation poin	t of 0.1 N amm	nonium hyd	droxide (p $K_b = 4$.	75) with	0.1N HCl is:	(\mathbf{b})			
	(A)	6	(B)	7	(C)	9	(D)	None of these				
41.	The n	naximum amo	unt of Ba	SO ₄ precipita	ted on mix	ing equal volum	e of Ba	$\text{Cl}_2(0.5\text{M})$ and H_2	2SO ₄ (1M)			
	will co	orrespond to :										
	(A)	0.25 M	(B)	1.0 M	(C)	1.5 M	(D)	2.0 M				
42 .	K _a f	or HCN is 5×	10^{-10} at	25°C. For ma	aintaining	a constant pH,	the volu	ume of 5 M KCN	solution			
	requi	red to be added	to 2 mL	of 2 M HCN so	lution is :							
	(A)	4 mL	(B)	7.95 mL	(C)	2 mL	(D)	9.3 mL				
43 .	In wh	In which case pH will not change on dilution :										
	(A)											
	(B)	0.01M CH ₃ C	COONH ₄									
	(C)	0.01M NaH ₂	PO ₄									
	(D)	in all cases										
44.	$M(OH)_x$ has K_{sp} 4×10^{-12} and solubility $10^{-4}M$. Then the value of x is :											
	(A)	1	(B)	2	(C)	3	(D)	-4				
45 .	pH of	a mixture of	1M benzo	ic acid (pK _a =	4.20) and	1M C ₆ H ₅ COON	a is 4.5.	In 300 ml buffer	r, benzoic			
		s : [log 2 = 0.3]		- u								
	(A)	200 ml	(B)	150 ml	(C)	100 ml	(D)	50 ml				
46 .	10 ml of 0.2 M acid is added to 250 ml of a buffer solution with pH = 6.34 and the pH of the solution											
	becomes 6.32. The buffer capacity of the solution is :											
	(A)	0.1	(B)	0.2	(C)	0.3	(D)	0.4	0			
4 7.	A wea	ak base B(OH	I) has d	issociation co	nstant 10	⁻⁸ . The equilibri	um con	stant for its reac	ction with			
		A weak base $B(OH)_2$ has dissociation constant 10^{-8} . The equilibrium constant for its reaction with excess of strong acid will be:										
	(A)	10 ²⁰	(B)	10^{-6}	(C)	10^{-20}	(D)	10^{-16}				
							(D)	10				
48.	Follov	ving is the tit	ration cui	rve of CH ₃ CO	OH again	st NaOH added	14	_				
	with p	ohenolphthalei	n as the ii	ndicator. K _{ln} v	alue of ph	enolphthalein is	12	-	lont naint			
	4.0×	10^{-10} . Thus, i	ncorrect s	tatement is :			10 8	- 	llent point			
	(A)	it begins to	change co	lour from the J	pH 9.4		pH 8	-				
	(B)	it begins to	change c	olour from aci	d colourles	ss at pH 8.4 to	4 - 2 -	-				
		the base form (reddish pink) at pH 10.4										
	(C)	phenolphth	alein is sı	uitable indicat	or for CH	₃ COOH – NaOH		10 20 30 4 Volume of NaOH ad				
		titration										
	(D)	phenolphth	alein is a v	weak acid								
		I I										



49.	A weak monobasic acid (0.1 M) has a pH of 3 at a particular temperature (25°C). When this acid is neutralized by strong base (NaOH), what is the value of equilibrium constant at equivalence point at 25°C?											
	(A)	10 ⁹	(B)	10^{-4}	(C)	10^{-7}	(D)	10^{-14}				
50 .				left in a solut	tion after	mixing 50 ml	l of 0.2	M ACl ₂ with	50 ml of			
		NaOH. [K _{sp} of	A[OH] ₂	$=1.2\times10^{-11}$								
	(A)	$2.8 \times 10^{-4} \text{M}$				$1.4 \times 10^{-4} \mathrm{M}$						
	(C)	$2 \times 10^{-2} \mathrm{M}$			(D)	$4 \times 10^{-2} \mathrm{M}$						
51.	A weak acid HA after treatment with 12 mL of 0.1 M strong base BOH has a pH of 5. To reach at end point, the volume of same base required is 20 mL then K_a of acid is											
	(A)	1.5×10^{-5}			(B)	$8.12\!\times\! 10^{-6}$						
	(C)	1.8×10^{-6}			(D)	8.2×10^{-5}						
52 .				0.001M CH ₃ CO H ₃ COONa is add					ne H ⁺ ion			
	(A)	9×10^{-6}	(B)	18×10^{-6}	(C)	$4.5\!\times\!10^{-6}$	(D)	$5\!\times\!10^{-6}$				
53.	The pH at which an acid indicator with $K_a = 1 \times 10^{-5}$ changes colours when indicator concentration is $1 \times 10^{-5} M$ is :											
	(A)	4	(B)	5	(C)	6	(D)	3				
54.	_	for fluoride ion	at 25°C	is 1.48×10^{-11} ,	the ioniza	tion constant of	f hydrofli	uoric acid in wa	ater at this			
	(A)	$1.7\!\times\!10^{-5}$	(B)	3.52×10^{-3}	(C)	$6.75\!\times\!10^{-4}$	(D)	5.38×10^{-2}	\odot			
55.	(K _a =	nl of 0.2 M KOH 1.8×10^{-4})	is added	l to 40 ml of 0.5		H, the pH of the	resultin	g solution is :				
	(A)	3.75	(B)	5.6	(C)	7.5	(D)	3.4				
56 .				ater be 1.8 × 10-9			onstant v					
	(A)	1.8×10^{-16}	(B)	1×10^{-14}	(C)	1×10^{-16}	(D)	1.67×10^{-14}				
57.				d was titrated w		•	solution,	when half of th	e acid was			
	(A)	6.31×10^{-5}	(B)	3.2×10^{-5}	(C)	8.7×10^{-8}	(D)	6.42×10^{-4}				
58.	10 ⁻² (A)	mole of NaOH w	ras added	l to 10 litre of wa	ater. The p	oH will change b	ру: (D)	7				
59 .				neutral it must			·-,					
<i>30</i> .	(A)	pH = 7	(B)	$[H^+] = [OH^-]$	(C)	$[H^+] = \sqrt{K_W^{}}$	(D)	[H ⁺] < [OH ⁻]				

MEQB 186 Ionic Equilibrium

60 .	If an acidic indicator HIn Ionizes as $HIn \rightleftharpoons H^+ + In^-$. To what maximum pH value its solution has											
	distinc	et colour charac	cteristic of	HIn?								
	(A)	$pK_{In}-1$	(B)	$pK_{In}\pm 1$	(C)	pK_{In}	(D)	7				
61.	If first	dissociation o	of X(OH) ₃	is 100% where	e as seco	ond dissociatio	n is 50%	and third disse	ociation is			
	negligi	ble then the pH	H of 4×10	$^{-3}$ M X(OH) ₃ is:					\odot			
	(A)	11.78	(B)	10.78	(C)	2.5	(D)	2.22				
*62.	Which	of the following	g will have	e nearly equal H	+ concen	tration?						
	(A)	· ·	_	ed with 50 mL v								
	(B)	50 mL 0.1 M	H ₂ SO ₄ mi	xed with 50 mL	water							
	(C)	50 mL 0.1 M	H ₂ SO ₄ mi	xed with 100 ml	L water							
	(D)	50 mL 0.1 M HCl mixed with 50 mL water										
*63.	Which	hich of the following statement(s) is (are) correct?										
	(A)		_	HCl solution is								
	(B)	The conjugate base of $H_2PO_4^-$ is HPO_4^{2-}										
	(C)			nt of water incre		n temperature						
	(D)					_	l against	a strong bas	e at half			
		neutralization			•		Ü					
*64.	A buffe	er solution can	be prepar	ed from a mixtu	ire of							
	(A)	sodium aceta	ite and ac	etic acid in wate	er							
	(B)	sodium aceta	ite and hy	drochloric acid i	in water							
	(C)	ammonia and	d ammoni	um chloride in v	water							
	(D)	ammonia and	d sodium l	hydroxide in wa	ter							
*65.	Choose	e the correct st	atement (s	s) out of the follo	owing							
	(A)	In CH₃COOH	/CH₃COO	Na buffer, the re	eserve ac	eidity of the solu	ution is d	ue to CH ₃ COO ⁻	ions			
	(B)	It is not nece	ssary that	an acidic subst	tance mu	st contain hyd	rogen ion	S				
	(C)	It is not necessary that an acidic substance must contain hydrogen ions HCO $_3^-$ is both Bronsted base and Bronsted acid										
	(D)	Ü		s not contain OF			a base					
*66.	Which	of the followin	g will fund	etion as buffer?					\bigcirc			
	(A)	NaCl + NaOH	_		(B)	Borax + Bori	e acid		0			
	(C)	NaH ₂ PO ₄ + Na	a ₂ HPO ₄		(D)	NH ₄ Cl + NH ₄ C	ЭН					
67.				°C. For maintai		onstant pH = 9), the vol	ume of 5M KCN	V solution			
				of 2 M HCN solu		•						
	(A)	4 ml	(B)	7.95 ml	(C)	2 ml	(D)	9.3 ml				
			•		-		•					

68.	The pH of 0.5 M solution of NaHCO $_3$ is almost equal to :											
	(for H ₂	CO_3 ; $K_1 = 2 \times 10^{-3}$	⁻⁷ & K ₂	$=4 \times 10^{-11}$)								
	(A)	10.52	(B)	9.8	(C)	8.55	(D)	7.2				
69.	The nu	mber of H ⁺ pres	sent in 1	mL of a solution	whose p	H is 13:			\odot			
	(A)	6×10^7	(B)	$6\!\times\!10^{10}$	(C)	$6\!\times\!10^{23}$	(D)	$6\!\times\!10^{22}$				
70.	Some o	r more species g	iven belo	w have pH less	than 7.				\odot			
	(A)	10^{-8} M HCl										
	(B)	10^{-8} M NaOH										
	(C)	$10~\mathrm{mL}$ of $10^{-6}~\mathrm{N ext{-}HCl}$ diluted to $100~\mathrm{mL}$										
	(D) 10 mL of 0.01 M CH ₃ COOH at the end-point after addition of 10 mL of 0.01 M NaOH											
71.	K _a for	the reaction; Fe	e ³⁺ (aq.)+	H ₂ O(l) Fe (OH) ²⁺ (ac	q.) + H ₃ O ⁺ (aq.) is	6.5×10	0^{-3} . What is the	max. pH			
				_		tal iron (III) in a o						
	(A)	nich could be us	sea so tn (B)	2.41	(C)	2.79	(D)	1.59	(•)			
									•			
72 .						The solubility pr			efore :			
	(A)	$1.6 \times 10^{-11} \text{M}^4$	(B)	$4\times10^{-6}\mathrm{M}^2$	(C)	$8 \times 10^{-9} \text{M}^3$	(D)	$3.2 \times 10^{-14} \mathrm{M}^5$				
73.	If 500 r	nL of 0.4 M AgN	NO_3 is m	ixed with 500 m	nL of 2 M	I NH ₃ solution t	then wha	at is the concen	tration of			
	Ag(NH	3) ⁺ is solution?										
	Given:	$K_{f_1}[Ag(NH_3)]^+ =$	10 ³ ;K _{f2} [$Ag(NH_3)_2^+ = 10^4$								
	(A)	$3.33 \times 10^{-7} \mathrm{M}$			(B)	$3.33 \times 10^{-5} \mathrm{M}$						
	(C)	$3\!\times\!10^{-4}\mathrm{M}$			(D)	$10^{-7} \mathrm{M}$						
74.	The sim	nultaneous solub	oility of A	$AgCN(K_{sp} = 2.5 \times$	(10 ⁻¹⁶) a	and AgCl(K _{sp} = 1	1.6×10 ⁻¹	¹⁰) in 1.0 M NH	I ₃ (aq.)			
		pectively : [Given		_								
	(A)	$0.037, 5.7 \times 10^{-3}$	8		(B)	$5.78 \times 10^{-8}, 0.03$	37					
	(C)	$0.04, 6.25 \times 10^{-6}$	8		(D)	$1.58 \times 10^{-3}, 1.26$	6×10^{-5}					
75 .	The pH	of a solution o	btained	by dissolving 5	×10 ⁻⁴ n	noles of Ca(OH	$\Big)_2$ (stroi	ng electrolyte) to	o 100 ml			
	solution	at 298 K will b	e:									
	(A)	11	(B)	12	(C)	9.8	(D)	2				
76.					porated	to dryness due t	to which	7.0 mg of resid	^			
	The sol	ubility product for $4.9\! imes\!10^{-8}$	or CaCO. (B)	3 is: 4.9×10^{-5}	(C)	4.9×10^{-9}	(D)	4.9×10^{-7}	$lackbox{}{lackbox{}}{lackbox{}{lackbox{}{lackbox{}{lackbox{}{lackbox{}{lackbox{}{lackbox{}}{lackbox{}}{lackbox{}{lackbox{}}{lackbox{}}{lackbox{}{lackbox{}}}{lackbox{$			
	(A)	4.3×10	(D)	4.3×10	(C)	4.9×10	ען	4.3×10				

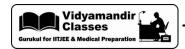
MEQB 188 Ionic Equilibrium

77.	Equilil	brium constants	of T ₂ O	(T or 3_1 H is an	isotope (of 1_1 H) and H $_2$ O	are dif	ferent at 298 K. Let at	298		
	K pure	e T ₂ O has pT (lil	ke pH) is	7.62. The pT of	a soluti	on prepare by ad	ding 10	mL of 0.2 M TCl to 15	5 mI		
		5 M NaOT is :	_	_							
	(A)		(B)	$14 + \log 7$	(C)	13.24 – log 7	(D)	13.24 + log 7			
78 .	рК _{а1} ,	pK_{a_2} , and pK_{a_3}	of H ₃ PO	4 are respective	ely x, y aı	nd z. pH of 0.01	M Na ₂ F	HPO_4 solution is : $lacksquare$			
	(A)	2	(B)	$\left(\frac{x+y}{2}\right)$	(C)	$\left(\frac{y+z}{2}\right)$	(D)	$\left(\frac{x+y+z}{2}\right)$			
79 .	The pr	recipitate of Ag ₂	CrO ₄ (K _s	$_{\rm p} = 1.9 \times 10^{-12}$) i	s obtain	ed when equal vo	olumes	of the following are mi	xed:		
	(A)	(A) $10^{-4} \text{ M Ag}^+ + 10^{-4} \text{ M CrO}_4^{2-}$				$10^{-2} \text{ M Ag}^+ + 1$	$10^{-3} \text{M} \text{C}$	CrO_4^{2-}			
	(C)	$10^{-5} \text{M Ag}^+ + 1$	$10^{-3} \text{M} \text{C}$	${ m rO}_4^{2-}$	(D)	$10^{-4} \mathrm{M Ag}^+ + 1$	$0^{-5} \text{M} \text{C}$	CrO_4^{2-}			
80.	Consid	der the reaction	$A^{-} + H_{3}$	$O^+ \rightleftharpoons HA + H$	H ₂ O. The	e K _a value for a	acid HA	is 1.0×10^{-6} . What is	s the		
		of K for this reac									
	(A)	$1.0\!\times\!10^6$	(B)	1.0×10^{-8}	(C)	$1.0\!\times\!10^8$	(D)	1.0×10^{-6}			
81.	The io	nization constan	t of HCC	O ₂ H is 1.8×10 ⁻⁴	4. What	is the percent ion	nization	of a 0.001M solution	?		
	(A)	66 %	(B)	42 %	(C)	34 %	(D)	58 %			
82.	At -5	0°C, the self–ion	ization o	constant (ionic p	roduct)	of NH ₃ is K _{NH₃}	= [NH ₄ ⁺	$[NH_2^-] = 10^{-30}$. How n	nany		
	amide	ions are present	t per mn	n ³ of pure liquid	l ammon	ia ?					
	(A)	600 ions/mm ³			(B)	6×10^6 ions/m	nm³				
	(C)	$6 \times 10^4 \text{ ions/m}$	nm³		(D)	60 ions/mm ³					
83.	The de	The degree of dissociation of anilinium acetate is :									
	(A)	independent o	f initial o	concentration							
	(B)	directly propor	rtional to	initial concentr	ation						
	(C)	inversely prop	ortional	to initial concen	tration						
	(D)	(D) inversely proportional to square root of initial concentration									
*84.	A weal	k base (BOH) wit	th $K_b =$	10 ⁻⁵ is titrated	with a st	rong acid HCl. A	t 3/4 ^{tl}	h of the equivalence p	oint		
	pH of	the solution is :									
	(A)	$5 + \log 3$	(B)	$5 - \log 3$	(C)	$14-5-\log 3$	(D)	8.523			
85.	_	K _a of a weak acid corresponding s		_	a weak	base, BOH is 4.7	78. The	pH of an aqueous solu	ıtior		
	(A)	9.58	(B)	4.79	(C)	7.01	(D)	9.22			
86.	Consid	der the following	solution	s of equal conce	ntration	s:					
		$A = NH_4Cl$;		H₃COONa ;							
		$C = NH_4OH$;		Н₃СООН							
	A buff	er solution can r	not be ob	tained by mixing	g equal v	rolume of :					

(C)

A and C

(D)


B and D

(A)

C and D

(B)

A and B

- 87. At 25°C, the dissociation constants of CH_3COOH and NH_4OH in aqueous solution are almost the same. The pH of a solution of 0.01 N CH_3COOH is 4.0 at 25°C. The pH of 0.01 N NH_4OH solution at the same temperature would be :
 - **(A)** 3.0
- **(B)** 4.0
- **(C)** 10.0
- **(D)** 10.5
- 88. An acid-base indicator has a $K_a = 3.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Then:
 - (A) pH is 4.05 when indicator is 75% red
 - **(B)** pH is 5.00 when indicator is 75% blue
 - (C) both (A) and (B) are correct
 - **(D)** None of these
- 89. pH of a solution made by mixing 50mL of 0.2 M NH_4Cl and 75 mL of 0.1 M NaOH is : $[pK_b \text{ of } NH_3 \text{ (aq)} = 4.74, \log 3 = 0.47]$

(

- **(A)** 7.02
- **(B)** 13.0
- **(C)** 7.02
- **(D)** 9.73
- **90.** A certain buffer solution contains equal concentration of X^- and HX. The K_b for X^- is 10^{-10} . The pH of the buffer is:
 - **(A)** 4
- (B)
- **(C)** 10
- **(D)** 1
- 91. Calculate the pH at the equivalence point of the titration between $0.1 \,\mathrm{M}\,\mathrm{CH_3COOH}(25 \,\mathrm{ml})$ with $0.05 \,\mathrm{M}\,\mathrm{NaOH}$. $\mathrm{K_a}(\mathrm{CH_3COOH}) = 1.8 \times 10^{-5}$.
- **92.** A weak base BOH is titrated with a strong acid HA. When 10 ml of HA is added, the pH is 10.2 and when 25 ml is added the pH is 9.1. Calculate the volume of acid that would be required to reach equivalence point.
- **93.** A 1.0×10^{-3} M solution of AgNO₃ is made 0.20 M in NH₃. What are the concentration of Ag⁺, Ag(NH₃)⁺ and Ag(NH₃)⁺ in the resulting solution. Given:

$$Ag(NH_3)_2^+ \longrightarrow Ag(NH_3)^+ + NH_3$$

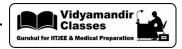
$$K_1 = 1.4 \times 10^{-4} M$$

$$Ag(NH_3)^+ \rightleftharpoons Ag^+ + NH_3$$

$$K_2 = 4.3 \times 10^{-4} M$$

Paragraph for Question No. 94 - 97

If a sparingly soluble salt is placed in water, after some time an equilibrium is established when the rate of dissolution of ions from the solid equals the rate of precipitation of ions from the saturated solution at a particular temperature. Thus, a dynamic equilibrium exists between the undissociated solid species and the dissolved ionic species in a saturated solution at a particular temperature. For example, in AgCl, we have the following equilibrium:


$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

The equilibrium constant, $K_{eq} = \frac{[Ag^+][Cl^-]}{[AgCl]}$

: [AgCl] is constant

$$\therefore K_{eq} \times [AgCl] = [Ag^+][Cl^-]$$

MEQB 190 Ionic Equilibrium

$$\Rightarrow$$
 $K_{sp(AgCl)} = [Ag^+][Cl^-]$ (i)

If there would not have been a saturated solution, then from equation (1), K_{eq} . [AgCl] $\neq K_{sp}$. but K_{eq} . [AgCl] = Q_{AgCl} , where Q is ionic product. It implies that for a saturated solution, $Q = K_{sp}$, K_{sp} is temperature dependent.

When $Q < K_{sp}$, then the solution is unsaturated and no precipitation occurs.

When $Q = K_{sp}$, then solution will be saturated, precipitation starts.

When $Q > K_{sp}$, the solution will be supersaturated and there will be formation of precipitate.

pH of a saturated solution of Ba(OH)₂ is 12. Hence K_{sp} of Ba(OH)₂ is : 94.

- $5 \times 10^{-7} \,\mathrm{M}^3$

- **(B)** $5 \times 10^{-4} \text{ M}^2$ **(C)** $1 \times 10^{-6} \text{ M}^3$
- $4 \times 10^{-6} \text{M}^3$ (D)

95. A solution is a mixture of 0.05 M NaCl and 0.05 M NaI. The concentration of iodide ion in the solution when AgCl just starts precipitating is equal to:

$$(K_{sp}AgCl = 1 \times 10^{-10}M^2; K_{sp}AgI = 4 \times 10^{-16}M^2)$$

- (A)

- $4 \times 10^{-6} \text{M}$ (B) $2 \times 10^{-8} \text{M}$ (C) $2 \times 10^{-7} \text{M}$ (D) $8 \times 10^{-15} \text{M}$

Silver iodide is used in cloud seeding to produce rain AgI \rightleftharpoons Ag⁺(aq) + I⁻(aq); K_{sp} = 8.5×10^{-7} . 96.

 $AgNO_3$ and KI are mixed to give $[Ag^+] = 0.010M$; $[I^-] = 0.015M$. Will AgI precipitate?

- (A) yes
- **(B)** no
- (C) can't say
- (D) this depends on [NO₃] and [K⁺] as well

97. Slaked lime, Ca(OH)₂ is used extensively in sewage treatment. What is the maximum pH that can be established in Ca(OH)₂ (aq)

$$\operatorname{Ca}\left(\operatorname{OH}\right)_{2}(s) \Longrightarrow \operatorname{Ca}^{2+}(\operatorname{aq}) + 2\operatorname{OH}^{-}(\operatorname{aq}); \qquad \qquad \operatorname{K}_{\operatorname{sp}} = 5.5 \times 10^{-6}$$

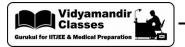
(A)

12.34 (B)

7 (C)

(D) 14

Paragraph for Question No. 98 - 100



Acidity or alkalinity of a solution depend upon the concentration of hydrogen ion relative to that of hydroxyl ions. The product of hydrogen ion & hydroxyl ion concentration is given by

$$K_W = [H^+][OH^-]$$

the value of which depends only on the temperature & not on the individual ionic concentration. If the concentration of hydrogen ions exceeds that of the hydroxyl ions, the solution is said to be acidic; whereas, if concentration of hydroxyl ion exceeds that of the hydrogen ions, the solution is said to be alkaline. The pH corresponding to the acidic and alkaline solutions at 25°C will be less than and greater than seven, respectively. To confirm the above facts 0.5 M CH₃COOH is taken for the experiments.

[Given: K_a of acetic acid = 1.8×10^{-5}]

98. Degree of dissociation of acetic acid is :

(A) 66×10^{-2}

(B) 6×10^{-3}

(C) 3×10^{-3}

(D) 5×10^{-3}

99. pH of the solution will be :

(A) 2.52

(B) 2.22

(C) 5

(D) 3.92

100. Now to increase the hydrogen ion concentration $100\,dm^3$ of $0.1\,M$ HCl solution is added to $100\,dm^3$ of $0.5\,M$ acetic acid solution, then what will be the pH of the final solution :

(A) 6

(B)

1.3

(C) 3

(D) 1